Optimal Design of a PZT Bimorph Actuator for Minimally Invasive Surgery
نویسندگان
چکیده
A metamodel-based approach is developed to optimize the force and displacement performance of a piezoceramic bimorph actuator. A segmented design with a variable piezoceramic layer thickness is proposed, where the thicknesses of discrete piezoceramic segments are used as the design variables. Design of experiments and metamodeling techniques are employed to construct computationally inexpensive approximations of finite element simulations of the PZT bimorph actuator. The metamodels are then used in lieu of the actual FEM for optimization. Design objectives include maximum tip deflection, maximum grasping force, and maximum work available at the tip. The metamodels are also used to rapidly generate the design space and identify the Pareto frontier for the competing design objectives of maximum deflection and maximum force. The accuracy and efficacy of two types of metamodels —response surfaces and kriging models —are compared in this study. By optimizing the thickness of the piezoceramic layers, and by allowing the voltage applied to each segment to vary, dramatic improvements in deflection and force are obtained when compared to a standard straight bimorph actuator. The motivation for this design is the need in the field of minimally invasive surgery for improved grasping tools, where a pair of optimized bimorph actuators can be used as a simple grasping device.
منابع مشابه
Optimization of a piezoelectric bimorph grasper for use in minimally invasive surgical applications
The potential use of piezoelectric bimorph actuators in minimally invasive surgery suture-needle grasper/holder applications is explored computationally. Upon defining the design/functional requirements for such surgical tools, a finite element analysis of the underlying piezoelectric boundary value problem is combined with the genetic algorithm optimization routine to arrive at an optimal morp...
متن کاملOptimal Design of Smart Tools for Minimally Invasive Surgery
1. Abstract A new integrated grasping tool for minimally invasive surgery has been designed consisting of two piezoelectric bimorph actuators. To improve the force and deflection performance of the bimorphs, a segmented design with varying piezoelectric layer thicknesses is proposed, and an optimization procedure developed for sizing the section thicknesses. Design of experiments and response s...
متن کاملOptimal energy density piezoelectric bending actuators
The design and analysis of piezoelectric actuators is rarely optimized for low mass applications. However, emerging technologies such as micro air vehicles, and microrobotics in general, demand high force, high displacement, low mass actuators. Utilization of generic piezoceramics and high performance composite materials coupled with intelligent use of geometry and novel driving techniques yiel...
متن کاملOptimal Locations on Timoshenko Beam with PZT S/A for Suppressing 2Dof Vibration Based on LQR-MOPSO
Neutralization of external stimuli in dynamic systems has the major role in health, life, and function of the system. Today, dynamic systems are exposed to unpredicted factors. If the factors are not considered, it will lead to irreparable damages in energy consumption and manufacturing systems. Continuous systems such as beams, plates, shells, and panels that have many applications in differen...
متن کاملOptimization of a circular piezoelectric bimorph for a micropump driver
Piezoelectric bimorph actuation has been successfully used in numerous types of microdevices, most notably micropumps. However, even for the simple case of circular geometry, analytical treatments are severely limited. This study utilized the finite-element method to optimize the deflection of a circular bimorph consisting of a single piezoelectric actuator, bonding material and elastic plate o...
متن کامل